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[1] Shadowing by vegetation, landforms, or clouds can reduce the surface temperature
relative to unshadowed portions of the same land area. This shading effect can cause
azimuthal variation of the outgoing infrared radiance that is currently not taken into
account in remote sensing and Earth radiation budget analyses. In this paper, multiangle
longwave (LW) (5–200 mm) and window (WN) (8–12 mm) radiances taken by the Clouds
and the Earth’s Radiant Energy System (CERES) rotating azimuth plane scanner on the
Tropical Rainfall Measuring Mission (TRMM) and Terra satellites are used to determine
the azimuthal anisotropy of LW and WN fields over all solar zenith angles and surface
types in clear and cloudy conditions. The azimuthal component of the anisotropy is
isolated by constructing limb-darkening models for each category of surface type and
topography in each solar zenith angle (SZA) bin. The viewing zenith angle dependence of
WN and LW radiances in clear scenes depends on the SZA, possibly because of changes in
the boundary layer temperature structure during the day. The observed mean radiances, in
general, are greater when viewing the sunlit hemisphere (backscattering) than when
viewing the shaded (forward scattering) hemisphere. This forward-back contrast increases
with increasing terrain roughness and is stronger for surfaces with open vegetation such as
shrubs and grass than for contiguous vegetation like forests. The anisotropy is less well
defined for barren deserts. Maximum anisotropy occurs for SZAs between 48� and 70�.
This paper provides the first evidence that clouds also induce longwave azimuthal
anisotropy. Strong forward-back radiance contrast is evident for partly, mostly, and
overcast scenes for SZA < 48�. The contrast disappears for overcast scenes and decreases
for partly and mostly cloudy scenes at higher SZAs. The TRMM sampling is limited and
causes some biases at particular angle sets but overall provides a reasonable depiction
of the anisotropy at all SZAs. Terra yields a more accurate anisotropy characterization but
only for SZAs between 48� and 70�. A simple model constructed from the TRMM
results for clear scenes reduces clear-sky temperature prediction RMS errors by 38% or
more while minimizing the biases associated with azimuthal anisotropy. The model
should yield similar or better reductions in the errors associated with retrievals of skin
temperature or LW fluxes, especially those from geostationary satellites. In addition,
future analyses of combined TRMM, Terra, and Aqua CERES data will likely provide
more accurate correction models that could further reduce errors in surface skin
temperature and radiative flux for both clear and cloudy scenes. INDEX TERMS: 3360
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1. Introduction

[2] Accurate estimates of the Earth radiation budget and
the surface skin temperature are becoming increasingly
important for climate [Wielicki et al., 1996] and weather
prediction [e.g., Garand, 2003], respectively. Such esti-
mates are generally based on measurements of broadband
or narrowband radiances that provide only one perspective
of the viewed scene. This limited perspective can bias the
estimate of flux or skin temperature because of anisotropy
in the radiance field. Anisotropy arises because of the
optical properties and three-dimensional structure of natural
surfaces and the effects of the intervening atmosphere. The
three-dimensional anisotropy of reflected shortwave radia-
tion has long been recognized [e.g., Coulson et al., 1965]
and a host of anisotropic directional models [e.g., Suttles et
al., 1988; Loeb et al., 2003] have been developed to account
for it. For the most part, the anisotropy of radiation emitted
by the Earth-atmosphere system has been considered as a
one-dimensional problem that can be addressed with a limb-
darkening model (LDM) to account for the average varia-
tion of outgoing thermal radiation with the viewing zenith
angle (VZA). Typically, LDMs implicitly or explicitly
account for the combined effects of atmospheric absorption
and re-emission [e.g., Minnis and Harrison, 1984] and
surface emissivity as functions of scene type [e.g., Suttles
et al., 1989; Prata, 1993]. More recently, Loeb et al. [2003]
developed a greatly improved set of empirical LDMs by
accounting for the effects of variations in cloud phase,
optical thickness, and atmosphere in addition to surface
type and degree of cloudiness. These new LDMs greatly
reduce the average error in the longwave (LW) flux at the
top of the atmosphere (TOA) over a given location, espe-
cially when measured by nongeostationary satellites. How-
ever, they only account for the VZA dependence of thermal
radiation, and the resulting instantaneous flux or skin
temperature may have relatively large errors over land
surfaces.
[3] Several studies [e.g., Kimes and Kirchner, 1983; Paw

et al., 1989] have demonstrated that, over land surfaces,
thermal emission is a three-dimensional problem due to
differential heating of the surface as a result of shadowing.
Thus the relative azimuth (RAA) and solar zenith (SZA)
angles must be considered when interpreting thermal radi-
ances observed over land surfaces. The importance of the
RAA can be visualized from Figure 1 that shows a schematic
diagram of a satellite radiance measurement during daytime.
Logically, a measurement of infrared (IR) radiance from the
satellite position should produce a lower value than one
from, say, the solar position because the shadowed area
would be cooler than the illuminated area.
[4] Using limited matched geostationary satellite imager

data, Minnis and Khaiyer [2000] showed that shadowing
effects over land cause azimuthal variations of IR brightness
temperatures that would affect large-scale daytime estimates
of surface temperature Ts and the TOA LW flux. They
concluded that variations in local topography, either land-
forms or vegetation, can cause these azimuthal variations
and that the patterns vary with SZA or time of the day. They
found a high correlation between bidirectional reflectance
anisotropy and the angular variation of Ts that depends on
terrain variability. Their results showed instantaneous errors

of up to 15 Wm�2 and 4�C in LW flux and Ts, respectively,
but were limited to narrowband IR measurements from pairs
of angles over a range of local times at several locations. A
complete characterization of the 3-D variation of Ts and the
LW radiance would require measurements over all times of
day from all angles at a given location or, at least, for a
given surface type.
[5] Prior to implementation of the Clouds and the Earth’s

Radiant Energy System [CERES; Wielicki et al., 1998], it
had not been possible to take sufficient measurements to
accurately depict the azimuthal anisotropy of either LW flux
or Ts. Because of their unique characteristics, the CERES
data taken from the Tropical Rainfall Measuring Mission
(TRMM), Terra, and Aqua satellites can be used to advance
our knowledge of the azimuthal dependence of thermal
infrared radiation exiting the TOA. In this study, the CERES
data are used to develop statistics of the azimuthal variation
of both IR window and LW radiances for various surface
and terrain types for all times of day over the tropics and
subtropics. Additionally, the potential impact of clouds on
the anisotropy is examined for the first time. These statistics
are used to construct a simple model that can be used to
reduce the instantaneous errors in the derived LW flux or
skin temperature or to predict the temperature or radiance
that would be viewed in a given direction.

2. Data

[6] TRMM is a precessing satellite in a circular orbit at
350 km with a 35� inclination giving it a 48-day repeat
cycle. The TRMM CERES scanner has a spatial resolution
of about 10 km at nadir and scans to the limb with a VZA
limit of approximately 70� yielding coverage between about
38�S and 38�N. It measures reflected shortwave (SW; 0.3–
5 mm) radiance, infrared window (WN; 8–12 mm) radiance
Lwn, and the total radiance (0.3–200 mm), which is the
combined reflected and emitted radiation from the viewed
scene. The raw radiances are unfiltered to account for the
spectral response characteristics of the sensor. The LW (5–
200 mm) radiance Llw is obtained by subtracting the unfil-
tered SW radiance from the unfiltered total radiance. Nom-
inally, the scanner operates in an alternating pattern
switching mode between 2 days of cross-track scanning
followed by 1 day in the rotating azimuth plane scan
(RAPS) mode. In that mode, the scanner continues operat-
ing in a cross-track action but it moves in a circular fashion
as it scans back and forth. The RAPS mode has the potential
for observing a given region from one or more VZA and
RAA combinations during a given overpass, but its data are
most useful for building up statistics of radiances at a
particular pair of VZAs and RAAs. Data from the TRMM
CERES scanner were taken continuously from January
through August 1998 and during the entire month of March
2000. However, the RAPS mode was occasionally preemp-
ted to operate in a different mode.
[7] The CERES Single Scanner Footprint TOA/Surface

and Clouds (SSF) TRMM edition 2B, Terra edition 1A, and
Aqua Beta 1 RAPS LW and WN radiances are used here to
examine the 3-D anisotropy in emitted radiation. The SSF
data combine the CERES radiances with cloud properties
[Minnis et al., 2002a, 2003] convolved into the CERES
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scanner footprint [Wielicki et al., 1998]. The cloud proper-
ties, which include cloud phase, height, optical depth and
other parameters, were derived from the TRMM Visible
Infrared Scanner (VIRS), which has a nominal resolution of
2 km, and from the Moderate Resolution Imaging Spectro-
radiometer (MODIS) on Terra and Aqua. The 1-km MODIS
data were sampled to an effective resolution of 2 km. Only
the cloud fraction Ac for each SSF is considered here. The
VIRS is a cross-track scanner that has a maximum VZA of
approximately 48� providing coverage between 37�S and
37�N. Development of anisotropic models from data taken
over different regions implicitly assumes that there is an
equal chance to measure radiances from all available
scattering angles from any location. Because of the TRMM
orbit configuration, nearly all of the CERES data viewing
poleward of 33�N are observed in the backscattering hemi-
sphere. Thus only data taken equatorward of 33� latitude
were used here to prevent biases from views poleward of
33�. When the CERES operates in the RAPS mode, the
cloud information and radiances come from two different
viewing perspectives. The VIRS scanning angle limits the
angular coverage by the SSF, so that some CERES RAPS
data with VZA between 48� and 70� are not used because
they have no matching VIRS cloud properties. This data set
is the same as that analyzed by Loeb et al. [2003]. The
MODIS scans out to a VZA of �70� so that the cloud data
are available for all of the CERES footprints.
[8] The TRMM orbit yields sampling of all local times in

a given area over 48 days providing measurements with
complete diurnal coverage. The SSF data were available for
a total of 269 days between January and August 1998. Only
68 actual RAPS SSFs were available during this period
because the scanner was used in either an along- or cross-
track mode instead of the RAPS mode (see Loeb et al.
[2003] for details). Because of the limited operation of the
RAPS and the sampling at different times of day, the
sampling is somewhat diluted for certain conditions and
SZAs. For a given 1� region, typically fewer than 40 clear
CERES pixels were obtained over the 68 days in a specific
angular bin (defined in section 3). Those pixels generally

correspond to measurements taken during 3 or 4 different
days over the period. Better sampling was available over the
desert areas of northern Africa and western Asia.
[9] To obtain better sampling at particular SZAs and

ensure that the TRMM data are representative, CERES
RAPS data taken between 60�N and 60�S from Terra
[Minnis et al., 2002a] and Aqua are also analyzed. Terra
and Aqua are in Sun-synchronous orbits with nominal
equatorial crossing times of 1030 and 1330 local time
(LT), respectively. Both satellites sample very similar, but
small ranges of SZA for a given latitude band during a
given season. Terra data taken during 753 days between
March 2000 and August 2002 and Aqua data taken during
January 2003 are used here.
[10] Geostationary satellite infrared (IR; �11 mm) data

and averaged VIRS radiances are used to test the model
developed here. The geostationary data considered here
consist of spectral radiances taken every 3 hours during
1998 from Meteosat-6, the eighth Geostationary Operational
Environmental Satellite (GOES-8), and the fifth Geostation-
ary Meteorological Satellite (GMS-5). These data were
averaged on a regular 1� latitude-longitude grid as part of
the CERES internal Temporal Interpolation Spatial Averag-
ing (TISA) Gridded Geostationary Orbits (GGEO) Narrow-
band Radiances data set. The VIRS spectral radiances and
cloud products were also averaged on the same 1� grid as
part of the TISA monthly gridded top of atmosphere (TOA)/
surface fluxes and clouds (SFC) data set. Hereafter,
1�-gridded VIRS and geostationary satellite mean infrared
radiances are referred to as SFC or VIRS, and GGEO data,
respectively.
[11] Terrain variability is based on the ETOPO5 surface

elevation data set [NOAA, 1988], a digital database of land
and seafloor elevations on a 50 latitude-longitude grid
(�10 km) with a nominal 1-m vertical resolution. For each
50 region, the surface variability (SV) is defined as the
standard deviation of the surface elevation computed using
the altitudes from the subject region and the 8 adjacent
regions. The resulting value of SV is used to determine the
index for grouping the region into one of three topographical
bins for each surface type. The first topography bin, the
minimum surface variability bin, contains all regions with SV
in the lowest 40 percentiles of surface variability. The next
bin, medium, uses the terrain variability percentiles between
40 and 70. The remaining data between percentiles 70 and
100 constitute the last bin, the maximum surface variability.

3. Methodology

[12] The basic approach taken here is to compute the
mean radiance for all defined solid angle intervals for a
given surface type and topographical category and use the
angular variability in the mean radiances to define the
anisotropy. Ideally, the anisotropy should be determined at
a very high angular resolution for each region and vegeta-
tion type. However, the limited sampling constraints neces-
sitate compromises in angular resolution and surface type
classification.
[13] To obtain statistically significant results, the data

were binned and averaged in angular bins as functions of
cloud fraction, surface type, and topography or terrain
variability. Assuming azimuthal symmetry, the RAA span

Figure 1. Schematic of satellite-Sun configuration with
shadowing and relative infrared radiance emission.
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of 0�–180� was divided into nine bins of Dfi = 20� and the
VZA range of 0�–70� was divided into seven 10� bins
denoted by Dqi. To account for illumination variations, three
intervals of SZA are considered: (1) 0�–48�, (2) 48�–70.1�,
and (3) 70.1�–90�. These ranges, Dmo, correspond to equal
spans of 0.33 in mo, the cosine of SZA. Time-of-day seg-
ments rather than SZA bins were also considered for
partitioning the data [Gambheer et al., 2002], but SZA
was found to be a more robust independent parameter. Four
cloud bins DAc are defined based on cloud amount: (1) clear
(Ac � 5%), (2) partly cloudy (5 < Ac � 50%), (3) mostly
cloudy (50 < Ac � 95%), and (4) overcast (Ac > 95%).
[14] A total of 9 vegetation types VT was used initially to

gain insight into the dependence of anisotropy on the
surface classification. The major vegetation types were
taken from the original International Geosphere Biosphere
Program (IGBP) scene types [Belward and Loveland,
1996]. No water, tundra, ice, snow, wetlands, or urban
surfaces were considered. First, all IGBP forest types were
combined into one forest class. Data from regions within the
forest, savanna, woody savanna, grassland, open and closed
shrublands, croplands, cropland-forest mosaics, and barren
desert were then analyzed to determine how the azimuthal
anisotropy varied for each classification. Table 1 lists the
values of SV for each of the IGBP surface types. In general,
the deserts and savannas are the flattest surface types while
grass and open shrubs are most common on rough terrain.
[15] Bin averages of LWandWN radiance were computed

for each individual vegetation type. The mean LW radiance
for each category is

LLW VT;SV;Ac;Dmo;Dq;Dfð Þ

¼

X
Llw VT;SV;Ac;Dmo;Dq;Dfð Þ

N VT;SV;Ac;Dmo;Dq;Dfð Þ ; ð1Þ

where N is the number of samples from the total RAPS data
set that meet the criteria for each category and Llw is a single
measurement. The summation is over N radiances. The
mean WN radiance LWN is also computed for each bin in
the same manner as equation (1) from the WN measure-
ments. The WN mean equivalent blackbody temperatures
TWN were computed from the bin averages of LWN using the

Planck function at a wavelength of 10 mm. Averages of mo,
VZA, and RAAwere computed for every angular bin using
all combinations of Ac, VT, and SV. For simplicity, it is
assumed that all parameters are derived separately for
different VT, SV, and Ac bins and these terms, shown before
the semicolons in the arguments for each variable in
equation (1), will not be shown explicitly hereafter.
[16] After averaging all data into the appropriate bins, the

mean radiance LLWV is computed for each VZA bin by
averaging over RAA;

LLWV ¼ LLW Dmo;Dqð Þ ¼

X9

i¼1

LLW Dmo;Dq;Dfið Þ

9
: ð2Þ

These averages, which characterize the limb darkening for
each case, are used to calculate the equivalent partial
Lambertian radiance LLWe(Dmo) by integrating LLWV(Dq)
over q = 0, 70�. The relative limb darkening,

g Dqð Þ ¼ LLWV Dqð Þ=LLWe; ð3Þ

is computed for each Dq. The magnitude of the VZA
variation is given by LLWV(Dq) � LLWe.
[17] To isolate the azimuthal anisotropy from limb dark-

ening, the differences,

DLLW Dq;Dfð Þ ¼ LLW Dq;Dfð Þ � LLWV Dqð Þ; ð4Þ

are computed for each Dmo. The resulting values are plotted
following the convention shown in Figure 2. VZA varies
along the x axis (radial axis) and RAAs are given along
the polar direction with RAA = 0� at the extreme left. The
RAA values between 0� and 90� correspond to forward
scattering, when the satellite and Sun are on opposite sides
of the zenith. RAAs between 90� and 180� correspond to
the backscattering hemisphere with the satellite and Sun on
the same side of the zenith. A normalized azimuthal
correction factor,

gLW Dq;Dfð Þ ¼ LLW Dq;Dfð Þ=LLWV Dqð Þ; ð5Þ

is also computed to eliminate the sensitivity of the
differences to the magnitude of the observed radiance and
for use in correcting for the azimuthal effect. Similar
quantities, gWN, DLWN(Df), LWNV(Dq), and LWNe(Dmo)
were computed in the same manner for the WN radiances.

Table 1. Surface Vegetation Type and Mean Surface Height

Variability

Vegetation Type

SV, m

Minimum Medium Maximum

IGBP number
5 (1–5) forest 0–7.6 7.6–34.5 >34.5
6 closed shrublands 0–13.3 13.3–33.2 >33.2
7 open shrublands 0–8.4 8.4–35.8 >35.8
8 woody savanna 0–9.6 9.6–21.4 >21.4
9 savanna 0–7.0 7.0–16.7 >16.7
10 grassland 0–14.0 14.0–68.2 >68.2
12 croplands 0–8.5 8.5–28.9 >28.9
14 crop mosaic 0–11.2 11.2–33.1 >33.1
16 barren desert 0–6.0 6.0 –16.0 >16.0

Surface type
I 10, 7 0–9.6 9.6–47.5 >47.5
II 5, 6, 8, 9, 12, 14 0–8.7 8.7–26.0 >26.0
III 16 0–6.0 6.0–16 >16.0

Figure 2. Plotting convention for radiance and tempera-
ture (T) anisotropy.
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DT(Dq, Df) was computed by first converting LWN(Dq, Df)
and LWNV(Dq) to brightness temperatures T(Dq, Df) and
T(Dq), respectively, using the 10-mm Planck function and
subtracting the latter from the former.
[18] The initial values of DT(Dq, Df) are plotted in

Figure 3 for clear conditions over the original nine vegeta-
tion types for solar bin 2 (48.0� � SZA < 70.1�). These
plots demonstrate that the anisotropy varies substantially
with VT and SV. The greatest ranges in DT for each VT
occur at the maximum surface variability. The minimum
variability in DT generally coincides with minimum SV.
Overall, it appears that the maximum anisotropy occurs for
regions covered with grass and open shrubs. The minimum
anisotropy is apparent for woody savannas, croplands, and
barren deserts. A few of the plots (e.g., for closed shrubs,
VT = 6) in Figure 3 are relatively noisy. More noise occurs
at other SZAs where the sampling is poorer.
[19] To minimize the noise, the vegetation types were

combined to produce new surface types ST according to
similarities in anisotropy. One objective measure of anisot-
ropy is the difference between the mean temperatures Ti(Dq)
in RAA bins i that mirror each other. This difference is

DTm ¼ S T1 � T9ð Þ þ T2 � T8ð Þ þ T3 � T7ð Þf þ T4 � T6ð Þg; ð6Þ

where the differences are computed for each VZA bin and
summed over all VZA bins for the maximum SV category.

To achieve the maximum sampling, a total of 3 surface
types were created by combining the IGBP VTs as indicated
in the bottom portion of Table 1. The barren desert class had
the lowest value of DTm and the greatest number of samples.
Therefore it was not combined with any other VT and
constitutes surface type 3. All further analysis only
considers the anisotropy computed according to surface
type instead of vegetation type with the parameter ST in
place of VT in equation (1). Additionally, mean bin values
were computed for every parameter including the SZA,
RAA, and VZA.

4. Results

4.1. TRMM Clear Scenes

[20] Figure 4 shows an example of gLW(Dq) for clear
conditions over all surface types and terrain variabilities.
Surprisingly, limb darkening is consistently more pro-
nounced for low SZAs (around noon) and is least for high
SZAs. That is, the range in gLW(Dq) decreases with increas-
ing SZA. This systematic limb-darkening behavior has not
been previously observed and, because it is not taken into
account in current limb-darkening corrections, could intro-
duce a hitherto unknown source of uncertainty in the
retrieval of LW flux from a radiance measurement. Based
on the curves in Figure 4, the additional error could be as a
large as ±2% in the instantaneous derived LW flux. Similar
variations of gLW(Dq) with SZA were found for the WN
data. Limb-darkening models were also derived from the
nighttime CERES RAPS data. The results (not shown) fall
in the middle of the curves in Figure 4 suggesting that
heating and cooling of the surface during the day as well as
other diurnally varying parameters such as humidity and
boundary layer thermal structure alter the clear-sky limb-
darkening characteristics.
[21] Figure 5 shows the corresponding values of DLLW,

the deviation from simple limb darkening, for all three
surface variabilities for SZA bin 2 over surface type. The
patterns are similar to those in Figure 3, but are generally
smoother. Negative values of DLLW predominantly occur on
the shadowed side for all cases. Over deserts, the results are
somewhat noisy for minimum and medium SV because the
signal is small, except near VZA = 70�. For all SV and ST,
the greatest positive values are found for VZA > 40� and
for RAA > 150�. The minimum values tend to occur near
VZA = 50�, RAA = 0� and around VZA = 65�, RAA = 90�.
Higher resolution binning would provide more details of
the anisotropy along the principal plane, but at the expense
of reduced sampling. Differences as large as 8 Wm�2sr�1

were found for ST = 1 and SV = 3 indicating that the
anisotropy is very strong, even for average conditions.
Radiance errors of that magnitude translate to flux errors
of �25 Wm�2. Greater or smaller differences will occur in
any given instance. For each surface type, the contrast
between forward and back scattering becomes more distinct
as surface variability increases. The contrast enhancement is
especially noticeable from the medium to maximum SV
bins confirming that increased topographical shadowing
enhances the temperature differences between illuminated
and shadowed surfaces. Notably, for the grass and open
shrub lands (ST = 1), the intense anisotropy is evident for
all SV bins.

Figure 3. TRMM WN anisotropy DT (K) for combined
vegetation types for all surface variabilities for solar bin
number 2.
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[22] The WN anisotropy for all SZA bins is plotted in
Figure 6 for ST = 1 in terms of DT over the full range of
terrain variability. As expected, the patterns in DT for SZA
bin 2 are very similar to those for DLLW in the top row of
Figure 5. Although not included in the color bar, mean
temperature differences exceeding 8 K are observed
between the sunlit and shaded sides. The patterns are
similar for all times of day, but the maximum anisotropy
occurs in the middle range of SZA. As SZA approaches 0�,
the solar intensity maximizes as the relative area in shadow
decreases. When the Sun is close to the horizon (SZA bin 3),

the solar heating is relatively weak but the shadowing is at a
maximum. Thus the anisotropy is not as strong as for SZA
bin 2 and the maximum heating is confined to a smaller
range of angles. However, a secondary maximum is evident
for all SVs when VZA > 60� and RAA < 60� in this last
SZA bin. Because of VZA limitations, it is not possible to
determine if the anisotropy increases for VZA > 70�. For the
middle SZA bin, the minimum along RAA = 0� tends to
broaden with increasing surface roughness. The secondary
minimum near RAA = 90� and VZA = 60� is generally
broader for smoother surfaces.
[23] The variation of DT with SZA for the other surface

types is similar but less pronounced. In Figure 7, the
secondary maximum in the forward direction is evident
for SZA bin 3 for desert surfaces with maximum terrain
variability. The largest positive values are all found at RAAs
between 120� and 180�. Similar patterns are observed for
other terrain conditions for ST = 2 and 3 although the
anisotropy is less pronounced. Similar analyses over ocean
yield no distinct patterns with Lr varying by less than 1.0 W
m�2 sr�1 or 1.0 K. To understand the statistical significance
of the anisotropy in Figures 6 and 7, standard errors in the
bin means were computed as SE = SD (N � 1)�1/2, where

Figure 4. TRMM LW clear-sky limb-darkening functions
from equation (3) for all surface types and variabilities.
Solid line and pluses denote SZA bin 1; dotted line and
asterisks denote SZA bin 2. Dashed line and diamonds
indicate SZA bin 3.

Figure 5. TRMM LW anisotropy DL (W m�2 sr�1) for all
surface types and variabilities for solar bin number 2.

Figure 6. Solar zenith angle variation of TRMM WN
anisotropy DT (K) over surface type 1 for all surface
variabilities.

Figure 7. Solar zenith angle variation of TRMM WN
anisotropy DT (K) over surface types 2 and 3 for all
maximum terrain variability (SV = 3).
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SD is the bin standard deviation and N is the number of
samples. The standard errors are found to be no greater than
5% of the means for all clear cases. Thus differences
exceeding 0.3 to 0.6 K, depending on the bin and SV are
significant at the 99% confidence level.

4.2. TRMM Cloudy Scenes

[24] Clouds also cause shadowing and should introduce
some anisotropy in the emerging infrared radiation field.
Figure 8 shows the WN DT over grass and open shrublands
(ST = 1) for cloudiness increasing from partly cloudy (PC)
to overcast (OC) conditions. As in the clear case (Figure 6),
the shadowed side is cooler than the sunlit side for the first
solar bin (Figure 8a) for all terrain and cloud cover
conditions. The anisotropy for the PC scenes is similar in
magnitude to that seen for clear conditions while it is
actually larger than the clear cases for the mostly cloudy
(MC) and OC conditions. Maximum anisotropy occurs for
the medium topography category. Overall, the contours are
much noisier than those for the clear case. The noise
increases with SZA. For SZA bin 2 (Figure 8b), there
remains some substantial anisotropy for the PC conditions,
but the shadow-sunlit contrast is somewhat diminished for
the MC cases. The OC scenes yield no significant patterns
at higher Sun angles. Significant anisotropy is also evident
for PC and OC cases for SZA bin 3 (not shown), but not for
overcast conditions. Overall, the strongest anisotropy was
found for SZA bin 1. Similar results were found for surface
type 2. The DT patterns for desert clouds are much noisier,
in general, presumably because of fewer cloud samples. The
mean cloud cover is roughly 22, 74, and 98% for the PC,
MC, and OC cases, respectively.
[25] It is not surprising that the shade-sunlit pattern of DT

observed for clear conditions is, to a great extent, replicated
in the PC and MC scenes. When the satellite and Sun are
coaligned, the satellite will measure radiation emanating
from the clouds and only the illuminated areas on the
surface. Conversely, when the satellite views in the forward
direction, it presumably measures the same radiance field
from the clouds, but now only measures the shadowed
surface areas resulting in a lower overall radiance. The
surface skin temperature responds almost immediately to
changes in cloud cover [Duda and Minnis, 2000], so the
shading effect is unlikely to be diminished very much in a
long-term average by cloud movement that exposes a scene
to alternating illumination and shading. The unexpected
result in these data is the relatively strong signal for OC
conditions in SZA bin 1. This effect is most likely due to
inclusion of optically thick and thin clouds in the OC
classification. The thin clouds will cause some shadowing
but will also permit some of the WN radiation to pass
through the cloud. At higher SZAs, the increased path
length of the cloud eliminates the direct solar beam required
for shadowing. Thus even if the same amount of optically
thin clouds is present for both SZA bins 1 and 2, the amount
of shadowing for the former will considerably greater than
that for SZA bin 2.

4.3. Terra Anisotropy

[26] Figure 9 shows DT for the grass and shrub lands
(ST = 1) for SZA bin 2 as derived from the Terra data. The
basic patterns for the clear scenes are much the same as

those seen in Figure 6 from the TRMM data. However,
the contours are smoother and the anisotropy is more
pronounced. Nearly all positive values are confined to
RAA > 90� and the negative values to RAA < 90�. No
secondary minima occur around VZA > 50�, RAA = 90�
as seen in the middle column of Figure 6. The Terra clear-
sky results for the other two surface types are very similar
to those in Figure 9 with smoother contours and distinct
positive-back and negative-forward differences. Compared
to the results for ST = 1, the magnitude of the anisotropy
is less for ST = 2 and least for ST = 3 as seen for the
TRMM data in Figures 5 and 6. The sampling was
insufficient to obtain representative results for the other
two SZA bins.
[27] The dissipation of the anisotropy signal with increas-

ing cloud cover is clearly evident in Figure 9. For all three
SVs, the magnitudes of the minimum and the maximum DT
both decrease with cloud amount. For overcast scenes, the
distinct shading-illumination pattern is no longer evident.
The contours for the cloudy cases in Figure 9 are much
smoother than their counterparts in Figure 8b suggesting
that the anisotropy for nonovercast scenes is well behaved.
Similar results were found for the cloudy classes in SZA bin
2 for desert and forest surfaces. Initial analyses using the

Figure 8. TRMM WN anisotropy for grass and open
shrubs (ST = 1) under different cloud conditions: partly
cloudy (PC), mostly cloudy (MC), and overcast (OC).
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Aqua CERES data for January 2003 yield results that are
very similar to those in Figure 9 indicating that the SZA
dependence of anisotropy is independent of time of day.
Likewise, computation of DT for Terra data separately from
each of the 3 years yields nearly identical contours indicat-
ing that the results in Figure 9 are stable and representative
of any year.

5. Discussion

[28] The results confirm that thermal infrared radiances
are predictably greater when viewing the sunlit side of a
land scene and smaller for shadowed conditions. Thus the
results should be valuable for correcting for the anisotropy.
Before exploring correction techniques, it is necessary to
understand the peculiarities of the data sets and the potential
uncertainties.

5.1. Surface and Terrain Dependence

[29] Azimuthal dependence of radiance appears to be a
stronger function of topographical variability than vegeta-
tion type. The RAA variation is largest for shrublands and
grasslands and least for deserts. Over deserts, it is less
consistent than over other types possibly as a result of
dramatic variability in surface albedo between regions.
Such variability may not be sampled at all angles and
could introduce some biases and perhaps reduce the
overall anisotropy. The shrublands and grasslands probably
produce more anisotropy in flatter terrain because there is
more space between the vegetation than in forests. Shad-
ows cast by trees in continuous forests are often not
observable because adjacent trees block the view of the
surface. Over barren deserts, only rocks are available to
cast shadows in flat lands. Terrain and vegetation still have
impacts in partly and mostly cloudy conditions but the
clouds are the primary shadow makers. Therefore surface
effects are somewhat muted. The results represent average
terrain conditions. Therefore greater anisotropy is likely to

occur in very rugged terrain as found by Minnis and
Khaiyer [2000].

5.2. Sampling

[30] Both satellite data sets yield similar, but not identical
results. Most of the TRMM DT patterns in Figures 6 and 7
have a relative maximum in the forward direction that
separates the minima at RAA = 0� and 90� and that is not
seen in the Terra results. These differences could be due to
different sampling patterns or to discrepancies in the scenes
and months that were sampled. To examine the latter, the
anisotropy was computed by constraining the Terra data to
the period January through August and to land between
33�S and 33�N to match the territory observed by TRMM.
No significant differences were found using either the
original or constrained Terra data indicating that the
TRMM-Terra differences are not due to differences in
geographical or seasonal sampling.
[31] The TRMM and Terra temporal and angular sam-

pling patterns, however, are dramatically different. TRMM
might sample a given region once or twice per month in a
given SZA bin while Terra samples a given region nearly
every day, mostly in the same SZA bin. The frequency of
viewing a particular set of angles also differs because of the
different orientations of the satellite relative to the solar
plane and the constraints in the angular coverage of TRMM
due to the VIRS VZA limit of 48�. Figure 10 shows
examples of TRMM and Terra sampling for SZA bin 2
over surface type 1 in clear skies. Maximum sampling
occurs around VZA = 50� for TRMM while the Terra
sampling peaks near VZA = 70� in the backscattering
direction. Sampling is least for TRMM around VZA =
70�, RAA = 90�. This is significant in that the secondary
minimum also occurs at this angular bin (Figure 6). The
Terra minimum is generally between VZAs of 10 and 50� at
low values of RAA. These sampling patterns are fairly
typical for most of the surface types and SZA bins. The
number of samples per day is smaller for the Terra data set,
but overall, the total number of samples is greater for Terra

Figure 9. Terra WN anisotropy DT (K) for SZA bin 2 for
surface type 1. CL denotes clear scenes.

Figure 10. Angular distribution of mean number of daily
samples for TRMM (68 days) and Terra (753) days for SZA
bin 2 for clear scenes.
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since TRMM only provided 68 days of data compared to
753 for Terra.
[32] Another distinct difference is the orientation of Sun-

synchronous satellites like Terra. Because its path is nearly
in a north-south orientation and it crosses the equator at the
same time of day, the scans to the east of the satellite are
always observing areas at an earlier local time than those to
the west of the satellite. The MODIS swath width of
2300 km translates to approximately 1.7 and 2.9 hours at
latitudes of 33� and 60�, respectively. Thus the land at the
eastern end of the swath will be viewed at a local time that is
1.5–3 hours later than that at the western end of the swath.
For a morning orbit, the eastern land view should, on
average, yield warmer brightness temperatures even without
any azimuthal anisotropy, because the observed surface has
been heated by the Sun longer than the land to the west. In
the construction of plots like those in Figure 9, it is
generally assumed that such time differences will be aver-
aged out because a given location will be viewed from both
directions over time. But this may not necessarily be true for
Sun-synchronous satellites because time of day is linked to
RAA. Views to the east between 60�N and 60�S are nearly
always in the forward hemisphere and, conversely, the
western views are in the back scattering hemisphere. Thus,
in clear conditions, the mean temperature of the forward
hemisphere should be greater than its converse because of
the local time difference, an effect that would tend to
diminish shadow-induced anisotropy. The TRMM orbit also
has some time-space sampling biases, but these are more
difficult to explain because the variable Earth-Sun geometry
is considerably more complex than that for the Sun-
synchronous satellites.
[33] Examples of the TRMM mean Sun angles for clear

scenes over ST = 2 in Figure 11a indicate mo ranges from
0.78–0.87, 0.50–0.56, and 0.10–0.22 for SZA bins 1, 2,
and 3, respectively. For the last two SZA bins, the maxi-
mum values tend to occur at high values of VZA while the
minima are near nadir. The opposite occurs for the first SZA
bin. For SZA bin 2, the maximum mo occurs near the
minimum in sampling (Figure 10a) and the secondary
minimum in DT.
[34] By binning the data into SZA bins, it is assumed

that for Terra, the time-space-angle biases discussed above
can be minimized. For SZA bin 2, this is possible because
the eastern scans at high latitudes will provide samples at
the upper end of the SZA range. Conversely, western
views at lower latitudes will produce samples for the
lower end of the range. That kind of tradeoff is not
possible for the other two SZA bins. Figure 11b shows
the mean values of mo for the Terra data corresponding to
the TRMM data in Figure 11a. No sampling was available
in SZA bin 3 because of the latitudinal restrictions. The
east-west bias is clearly evident for SZA bin 1 where no
compensation can occur. The east-west effect is noticeable
for SV = 1 in SZA bin 2, but is not evident for the other
terrain categories.
[35] Although it remains difficult to quantify, it is clear

that the Terra data provide smoother patterns for SZA bin
2 because of more uniform angular-bin sampling, greater
numbers of samples overall, and more homogeneous
sampling of the SZA range. Thus it is concluded that for
SZA bin 2, the Terra results are probably more represen-

tative of the LW and WN anisotropy. However, because
TRMM data provide reasonable sampling over all solar
angles and surfaces and are similar to the bin-2 Terra
results, the TRMM data, overall, provide a better charac-
terization of the anisotropy that could be used to correct
measurements of radiances in the thermal infrared spec-
trum. The TRMM data alone also provide sampling over
all SZA bins for the same regions. Although combining
the TRMM and Terra data sets would offer improved
sampling (more uniform bin coverage) and less noise
overall, it would be necessary to increase the latitudinal
coverage and thereby change the regional coverage as a
function of SZA. It is beyond the scope of this study to
consider that combination and analyze the possible latitu-
dinal biasing of the SZA dependence that accompanies the
use of the Terra data. Such analyses are deferred to future
study.

5.3. Clear-Sky Model and Validation

[36] A simple bidirectional emission model (BDEM) was
developed to account for LW and WN azimuthal anisotropy
in clear conditions based on the CERES TRMM bin-

Figure 11. Angular distribution of mean cos(SZA) for
clear skies over surface type 1 from (a) TRMM and (b) Terra
data.
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averaged radiances reported above. The model computes the
LW or WN anisotropic factor,

R ST; SV; mo;VZA;RAAð Þ ¼ pL0=M 0; ð7Þ

where L0 and M0 are linearly interpolated radiance and flux,
respectively. L0(ST; SV, mo, VZA, RAA) is obtained by
sequentially interpolating between the bin mean radiances
with respect to VZA, RAA, mo, and SV for a particular
surface type. The bin mean fluxes, M(ST, SV; Dmo), were
computed by integrating the bin-averaged radiances over all
RAA and VZA. Since the number of pixels sampled by
TRMM is inconsequential beyond 70�, it was necessary to
estimate radiance values for the last two VZA bins (70�–
80� and 80�–90�). The missing radiance values were
estimated using a quadratic fit to the radiances from the
filled VZA bins in a given RAA bin. M0(ST; SV, mo) is
obtained by interpolating between the bin mean fluxes in
the same manner used for radiance, except that there is no
interpolation with respect to VZA and RAA. In the radiance
or flux interpolation sequence, linear extrapolation is used
whenever the value of a given input parameter such as SV is
less than or greater than the mean value of the same
parameter in the first or last bin, respectively. The bin means
are assumed to be representative values at the centers of
each bin.
[37] To test the WN BDEM, the GGEO data were

adjusted to the VZA and RAA of temporally and spatially
matched SFC VIRS radiances. The spatial matching was
automatic because of the 1� gridding. To maximize the
number of samples and minimize temporal changes, only
GGEO data taken within 15 min of the SFC data were used.
Mean values of SV were computed for each 1� region. If the
region contains more than one scene type, the one covering
the greatest portion of the region was used to select ST. The
model was used to compute R1 and R2, the WN anisotropic
factors, where the subscripts 1 and 2 refer to GGEO and
SFC, respectively. The BDEM performance can be evalu-
ated using the difference DT between the observed GGEO
temperature and the GGEO temperature adjusted to the SFC
viewing perspective:

DT ¼ B�1 L1f g � B�1 L2 R1=R2ð Þf g; ð8Þ

where L1 and L2 are the SFC and GGEO radiances,
respectively and B�1 is the inverse Planck function for the
VIRS 10.8-mm channel. If the satellite imagers are
accurately intercalibrated and the BDEM is perfect, DT = 0.
[38] To ensure that the satellite imagers are properly

intercalibrated, the matched data were screened to obtain a
subset containing mean radiance pairs with nearly the same
values of RAA and VZA. Temperature differences were
computed for mean radiance pairs having differences in
VZA and RAA that are less 5� and 5�, respectively. The
results summarized in Table 2, show that overall, the VIRS
temperatures are roughly 0.6 ± 0.1 K less than their GGEO
counterparts. The differences are nearly the same for all
three satellites. Similar results were found using the looser
angular restrictions of Minnis et al. [2002b]. Thus, if the
models produce accurate corrections, the mean value of DT
should be about �0.6 K.

[39] The remaining matched pairs of GGEO and SFC data
were screened to remove navigationally mismatched data
and mean radiances corresponding to the VIRS channel
saturation temperature of 324 K, a potential source of bias.
The resulting values of DT from the filtered data were then
used to compute the mean bias and root-mean square
(RMS) difference for each scene type and all nine azimuthal
bins. To determine if the azimuthally dependent model
represents an improvement over a limb-darkening-only
method, the GGEO results were also adjusted to the SFC
view using the LDM, g(ST; SV, mo, Dq), from equation (3).
Table 3 lists the RMS and bias differences as a function of
the VIRS RAA for all matched data excluding those used for
the coangled comparisons in Table 2. The LDM bias errors
are positive in the first seven azimuth bins while all but two
of the BDEM bias errors are small negative values.
Although the GGEO data are probably taken at many
different RAAs for a given SFC azimuth bin, the data plotted
in Figures 5 and 6 indicate that the minimum and maximum
radiances should occur in the forward and back scattering
directions, respectively. The LDM bias errors are consistent
with this RAA behavior. On the other hand, the BDEM bias
errors show no systematic variation with Df and reduce the
mean bias to roughly �0.5 K indicating that the model is
working in proper direction. Additionally, the BDEM RMS
errors are reduced by 30–42% less than their LDM counter-
parts. The largest errors occur for RAA bin 4 where the
differences between the TRMM and Terra results are great-
est. This result suggests that some improvement might be
gained by using the Terra data where they are applicable.
[40] Table 4 summarizes the differences as a function of

the surface variability. For the flat surfaces (SV = 1), the
LDM and BDEM biases are nearly the same. However, the
BDEM reduces the RMS error by 28% even for surfaces
with little topography. The LDM bias increases to 0.6 K in
the medium topography class and up to 2.6 K for SV = 3.
That bias is 3.4 times greater than its BDEM counterpart.
Nevertheless, not all of the bias was removed by the BDEM
for SV = 3. Notably, the BDEM RMS errors are 45 and 51%
less than the corresponding LDM values for SV = 2 and 3,
respectively. As expected, the greatest impact is realized for
the roughest terrain. Overall, the BDEM bias error is 0.5 K
closer than the LDM bias to the mean difference for the
coangled data in Table 2 indicating that, on average, this
simple model can be used to account for the anisotropy of
infrared radiation for clear land surfaces during daytime.
The RMS error is reduced by 38% relative to the LDM. It is
0.5 K greater than the RMS difference for the coangled data
compared to 1.6 K for the LDM. Figure 12 shows scatter-
plots of the GGEO and VIRS data before and after applying
the BDEM correction. The LDM correction actually resulted

Table 2. Differences Between Matched SFC VIRS and GGEO 1�
11-mm Brightness Temperatures for Temporally Matched Data

Taken With Differences in VZA and RAA Less Than 5� and 5�,
Respectively

Satellite Mean, K RMS, K Number of Samples

GOES-8 �0.51 0.63 14
Meteosat-6 �0.64 1.49 54
GMS-5 �0.61 0.85 16
All �0.61 1.28 84
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in a larger RMS error than that for the raw data plotted in
Figure 12a. The BDEM correction (Figure 12b) noticeably
reduces the scatter and decreases the RMS difference
by 0.5 K relative to the uncorrected data in Figure 12a.
These results indicate that the azimuthal anisotropy is
the dominant error source since the LDMs worsened the
comparisons.
[41] As seen earlier, the TRMMWN patterns are probably

not the most accurate representation of the anisotropy
because of sampling biases. Furthermore, the WN spectrum
includes ozone and water vapor absorption lines not found in
most of the GGEO and VIRS absorption bands. The stronger
limb darkening by these absorbers may be responsible for
some of the increase in RMS error resulting from the
application of the LDMs to the IR data discussed earlier.
Despite the inaccuracies and spectral discrepancies, the
crude model developed here from the TRMM data signifi-
cantly improves the estimation of IR temperatures at differ-
ent angles compared to LDMs. This improvement is realized
even though the VIRS scan patterns and latitudinal limita-
tions probably minimized the impact of the maximum
anisotropy because it typically occurs at VZA > 50�. All
of the VIRS and most of the GGEO data were taken at VZA
< 50�. Thus even greater error reductions are possible even
with this early model.
[42] The LDMs used here are not the same as those

developed by Loeb et al. [2003]. However, the error
reductions would probably be similar because the Loeb et
al. [2003] models are based on the WN channel and do not
account for the azimuthal effects. The current LDMs are
based on the same data set used by Loeb et al. [2003] but
are formulated differently. The latter are parameterized
based on the surface type, total column precipitable water,
and the lapse rate between the skin temperature and the air
temperature at a pressure level 300-hPa lower than that at
the surface. It is not clear that that particular formulation
would account for the SZA dependence seen in Figure 4.
Further study is needed to examine the source of the SZA
dependency of limb darkening and whether the lapse rate
formulation would account for it. Ideally, the azimuthal
anisotropy observed here and the SZA dependence of limb
darkening could be included in later versions of the LW and
WN models as developed by Loeb et al. [2003].

5.4. Correlations With Shortwave Anisotropy

[43] Another approach for developing analytical BDEMs
could make use of relationships between SW bidirectional

reflectance models and the LW anisotropy. Minnis and
Khaiyer [2000] found that the difference in brightness
temperature between two satellites is highly correlated with
the difference in the normalized bidirectional reflectance
distribution functions (BRDF) for clear landform Minnis
and Harrison [1984]. The slope of the linear correlation was
found to be proportional to the terrain variability. Although
a complete examination of the relationship between SW and
LW anisotropy is beyond the scope of this paper, an initial
analysis of the data is warranted to determine if the SW-LW
connection might serve as a potential means for developing
an analytical model from the CERES data. The BRDFs
from Loeb et al. [2003] were used to calculate the BRDF
correction factor c(SZA, VZA, RAA) for each of the
angular bins for the clear categories for all SZA and ST
classes. The mean factor cv(SZA, VZA) was also computed
by averaging over all RAA bins at a given VZA. The BRDF
difference factor

Dc SZA;VZA;RAAð Þ ¼ c SZA;VZA;RAAð Þ � cv SZA;VZAð Þ;
ð9Þ

was also computed for each angular bin to isolate the
azimuthal SW effect. Figure 13 shows a scatterplot of Dc
and DT for all of the angular bins at SZA = 60� for SV = 3
and dark lands as defined by Loeb et al. [2003]. Overall, the
squared linear correlation coefficient is 0.81 even without
accounting specifically for differences in SV. This level of
correlation indicates that the SW-LWanisotropy relationship
is a strong candidate for developing advanced models to
correct for LW azimuthal anisotropy.

6. Concluding Remarks

[44] It is clear from all of the results that more thermal
radiation is observed on the sunlit side than on the shad-
owed side in most atmospheric conditions over land.
Although no ideal data sets exist yet to perfectly measure
the behavior of this anisotropy over all solar zenith angles,
the CERES TRMM RAPS data provide sufficient informa-
tion to reduce multiangle IR temperature prediction errors
by 35% or more over the full range of daylight conditions.
More sophisticated anisotropic correction formulations in-
cluding TRMM, Terra and Aqua data could yield more
accurate representations and further reduce the errors. Such
models could be more analytical and might include infor-
mation from bidirectional reflectance models to account for
the shadowing of particular surface types. The azimuthal
anisotropy is also significant in scenes containing clouds.
Future model formulations should take this effect into
account, perhaps in the form of additional parameters such

Table 3. Difference Between GGEO 11-mm Brightness Tempera-

tures and SFC Temperatures Corrected to GGEO Angles Using

Limb-Darkening Models (LDM) and Bidirectional Emission

Models (BDEM)

SFC VIRS
Azimuth Bin

LDM
Bias, K

LDM
RMS, K

BDEM
Bias, K

BDEM
RMS, K Samples

1 (0–20�) 0.66 2.91 �0.10 1.86 358
2 (20–40�) 0.12 2.63 �0.40 1.67 436
3 (40–60�) 0.25 2.36 �0.34 1.66 646
4 (60–80�) 0.82 3.20 �0.08 2.01 903
5 (80–100�) 0.26 2.95 �0.21 1.71 1158
6 (100–120�) 0.96 2.96 0.41 1.73 835
7 (120–140�) 0.44 2.89 0.06 1.70 639
8 (140–160�) �0.12 2.85 �0.16 1.77 644
9 (160–180�) �0.11 2.73 �0.04 1.73 576

Table 4. Same as Table 3, Except as Function of Surface

Variability

SV
Class

LDM
Bias, K

LDM
RMS, K

BDEM
Bias, K

BDEM
RMS, K Samples

1 �0.14 2.47 �0.19 1.78 3451
2 0.63 2.88 �0.13 1.59 2131
3 2.57 4.49 0.75 2.22 613
All 0.39 2.87 �0.08 1.77 6195
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as cloud amount, phase, temperature, and optical depth.
This study did not examine the anisotropy dependence on
horizontal resolution. Such a dependency should be con-
sidered in future analyses.
[45] Infrared anisotropy over land is clearly a source of

error that can be minimized with the available CERES data
sets. The current formulation of the bidirectional emission
model can be used to reduce LW flux errors for clear scenes
and to improve skin temperature retrievals. The reductions

in skin temperature retrieval errors could be evaluated using
data from surface radiometer sites and retrievals from
geostationary satellite data. Additional testing of the current
model should be pursued using matched Terra and TRMM
WN and LW data because they are spectrally consistent
with the model data. Both radiance and flux errors could be
assessed. Implementation of the model should yield smaller
instantaneous errors in LW fluxes from CERES and reduce
biases in the LW radiation field measured by the Geosta-

Figure 12. Scatterplots for matched data set (between GGEO and VIRS) WN temperatures with (a) no
corrections and (b) BDEM corrections. RMS and bias errors are indicated for the 6195 matched 1� boxes.
GGEO includes Meteosat-6, GMS, and GOES-8 data.
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tionary Earth Radiation Budget instrument on Meteosat-8.
Additionally, more accurate instantaneous estimates
of surface skin temperature from IR imagers on all geosta-
tionary satellites should be possible with these proposed
corrections.
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Figure 13. Scatterplot and linear regression fit for mean
WN azimuthal temperature differences and SW BRDF
difference factor for average clear scenes over dark land
surfaces and SV = 3 at SZA = 60�.
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